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Abstract. Recommender systems may suffer from congestion, meaning
that there is an unequal distribution of the items in how often they are
recommended. Some items may be recommended much more than oth-
ers. Recommenders are increasingly used in domains where items have
limited availability, such as the job market, where congestion is espe-
cially problematic: Recommending a vacancy—for which typically only
one person will be hired—to a large number of job seekers may lead to
frustration for job seekers, as they may be applying for jobs where they
are not hired. This may also leave vacancies unfilled and result in job
market inefficiency. We propose a novel approach to job recommendation
called ReCon, accounting for the congestion problem. Our approach is to
use an optimal transport component to ensure a more equal spread of
vacancies over job seekers, combined with a job recommendation model
in a multi-objective optimization problem. We evaluated our approach
on two real-world job market datasets. The evaluation results show that
ReCon has good performance on both congestion-related (e.g., Conges-
tion) and desirability (e.g., NDCG) measures.

Keywords: Job Recommendation · Congestion Reduction.

1 Introduction

The aim of job recommendation is to recommend jobs (items) that are suitable
for job seekers (users) and, if applied correctly, can have a positive impact on
their career paths. In a job market, there is competition between job seekers for
jobs and also between jobs (or companies) for job seekers [8]. This competition
may be aggravated by the presence of so-called congestion, meaning that some
items are more visible and desirable than others [4]. The use of job recommender
systems risks to create or amplify congestion, as desirable items are often recom-
mended to many users. This risks frustrating job seekers, as they will be unlikely
to be successful when all applying for the same jobs. It is therefore important
that job recommender systems explicitly account for congestion and try to limit
or reduce it. The aim of this paper is to address that need.
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Problem 1. The problem we address in this paper is to reduce congestion in
job recommendation, i.e., to improve congestion-related measures such as Con-
gestion [1], while recommending desirable recommendations, i.e., to keep good
performance of desirability measures such as NDCG.

Our approach is to spread jobs over job seekers more equally using the optimal
transport theory. We optimize the spread of jobs over job seekers with a given
job recommendation model as a multi-objective task. Since optimal transport
aims to match two distributions, we minimize the optimal transport between
job seekers and jobs, to enforce a high matching degree between each job and
a few job seekers and vice versa. Hence, we expect that the congestion in the
generated recommendations by the model is reduced.

The joint optimization of the base recommendation model and the optimal
transport component leads to having a trained model that offers advantages
over post-processing approaches in real-life scenarios that require incremental
updates of the model and also consider cold-start users and items.

This paper is an extended version of Mashayekhi et al. [7] that contains
experiments with both collaborative filtering and content based methods. The
main contributions of this paper are:

– We introduce a novel approach, ReCon, to reduce congestion in a given job
recommendation model. We jointly optimize the job recommendation model
objective function and optimal transport cost between job seekers and jobs
as a multi-objective task. (Section 2)

– We discuss the requirements for employing the so-called entropic optimal
transport using the Sinkhorn algorithm [5] to facilitiate the optimization in
ReCon. (Section 2.2)

– We evaluate ReCon on two job recommendation datasets and compare it with
the baselines in terms of three desirability measures (e.g., NDCG), and also
three congestion-related measures (e.g., Congestion). (Section 3)

Related work and conclusions are summarized in Sections 4 and 5 respectively.

2 Proposed Method

In this section, we introduce our approach, ReCon, to address Problem 1, reducing
congestion in job recommendation. We first explain the multi-objective approach
in Section 2.1. We then introduce the requirements for the efficient optimization
of ReCon in Section 2.2. Finally, we suggest a matching cost function and a
similarity function for computing optimal transport between job seekers and
jobs in Section 2.3 that meet those requirements.

We also give a brief introduction to optimal transport theory and its efficient
optimization using the Sinkhorn algorithm in Appendix A.
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2.1 ReCon

Our approach is to optimize the desirability objective function of a recommen-
dation model and an optimal transport cost between job seekers and jobs as a
multi-objective task. The optimal transport problem distributes job seekers more
equally over all jobs and vice versa. Hence, we expect that the recommendations
from ReCon have lower congestion.

For a given recommendation model M with an objective function OM and a
set of parameters θ, we represent the matching score between users and items
by P = [pui]. The matching score between user u and item i is defined by
pui = fθ(u, i), where f is a function of the set of parameters θ. We define the
multi-objective task as follows:

OReCon = OM + λOC , (1)

where OC is the objective function of the optimal transport between job seekers
and jobs that is defined using the recommendation scores P . The goal of OC

is to reduce the congestion in the recommendations. The weight of OC in the
multi-objective task is also indicated by the hyper-parameter λ.

To recommend top-k items to user u, we have to compare the recommenda-
tion scores between u and all items. To account for this competition between
different items for the same user, it is important not only to penalize the cost
of matching user-item pairs that are part of the optimal transport solution in
the optimal transport objective function but also to penalize the similarity of
user-item pairs that are not part of the optimal transport solution. Hence, the
optimal transport optimization problem in ReCon is:

min
F

∑
u∈U

∑
i∈I

fuic(pui) + (1− fui)s(pui), s.t. fui ≥ 0 ∀(u, i) ∈ U × I,∑
i∈I

fui = wu ∀u ∈ U,
∑
u∈U

fui = wi ∀i ∈ I, (2)

where c is a function of P to indicate the cost of matching a user and an
item and s is a function of P to indicate the similarity of a user and an item. We
can write the objective function in Eq. (2) as

∑
u∈U

∑
i∈I

s(pui)+
∑
u∈U

∑
i∈I

fui(c(pui)−

s(pui)). Since the first double summation does not depend on F , it can be
optimized outside the linear program in Eq. (2). Thus, the objective function
in the linear program can be written as

∑
u∈U

∑
i∈I

fui(c(pui) − s(pui)), which can

be optimized efficiently using the Sinkhorn algorithm. We denote this objective
function by OCOT . Hence, the multi-objective task can be written as follows:

OReCon = OM + λOCOT + λ
∑
u∈U

∑
i∈I

s(pui). (3)
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2.2 Efficient optimization

For efficient optimization, all terms in Eq. (3) have to be differentiable w.r.t. θ.
We first require P to be differentiable w.r.t. θ. Next, the Sinkhorn algorithm
could be used for optimizing OCOT , which is differentiable w.r.t. P when c and
s are differentiable w.r.t. P . We also require OM to be differentiable w.r.t. P .
Hence, the objective function OReCon in Eq. (3) would be differentiable w.r.t. θ
and optimization algorithms such as gradient descent may be employed for the
optimization.

In summary, the requirements for efficient optimization are:
1. Recommendation scores P must be differentiable w.r.t. θ.
2. The objective function of M , OM , must be differentiable w.r.t. P .
3. Functions c and s must be differentiable w.r.t. P .

2.3 The matching cost and similarity functions

High recommendation score pui indicates that user u and item i may match well.
Hence, the cost of matching them in optimal transport should be low and their
similarity should be high. If pui > 0, we suggest using the following functions c
and s as the cost of matching u with i and the similarity of u and i respectively:

c(pui) = − ln(pui), s(pui) = − ln(1− pui). (4)

The intuition behind choosing this term is explained in Appendix B.
Functions c and s in Eq. (4) are differentiable w.r.t. the recommendation

scores P . Hence, functions c and s in Eq. (4) meet the third requirement in
Section 2.2, allowing for efficient optimization.

3 Experimental Evaluation

In this section, we describe the experimental evaluation of ReCon to see how
does ReCon perform in congestion-related measures and desirability measures
compared to the base recommendation models and the baselines.

3.1 Experimental evaluation details

We use a subset of VDAB1 and CareerBuilder2 datasets for evaluation. More-
over, CNE [6] and a content-based neural network (NN) are used as the base
recommendation models. We compare ReCon with two baselines, CAROT [1]
and FAirRec [10]. More details about the datasets, the recommendation mod-
els, baselines, evaluation settings, details of hyper-parameters, more results for
baseline comparison, execution time comparison, and hyper-parameter sensitiv-
ity analysis for λ are presented in Appendix C. The source code and the public
dataset for repeating the experiments is available here3.
1 https://www.vdab.be/
2 https://www.kaggle.com/c/job-recommendation
3 https://github.com/aida-ugent/ReCon/tree/main/source_code

https://github.com/aida-ugent/ReCon/tree/main/source_code
https://www.vdab.be/
https://www.kaggle.com/c/job-recommendation
https://github.com/aida-ugent/ReCon/tree/main/source_code


Title Suppressed Due to Excessive Length 5

3.2 Results

Here we compare the methods in terms of the desirability measures and congestion-
related measures. Figure 1 shows desirability measures against congestion-related
measures for all datasets. ReCon mostly improves congestion-related measures,
while keeping good performance (or improving over the base recommendation
model in some cases) of desirability measures for some selections of hyper-
parameters. We can also observe that ReCon is Pareto optimal for some selec-
tions of hyper-parameters. While achieving almost the same or better desirability
measure performance compared to the base recommendation models, ReCon can
result in better congestion-related measures compared to the base recommenda-
tion models and the baselines.

The same conclusion could generally be established for all the desirability
measures against all congestion-related measures, where for some selections of
hyper-parameters, ReCon usually finds a good trade-off between both measures.
More figures for different combinations of measures are available in Appendix C.

Compared to the baselines, ReCon has an additional advantage in that it
trains a recommendation model, whereas the baselines simply generate a rec-
ommendation list. This makes ReCon particularly advantageous in real-world
applications where the model requires incremental updates to account for new
interactions or the model has to generate recommendations for cold-start users
and cold-start items.

4 Related Work

One important aspect of job recommendation models is that there is competition
between job seekers/jobs for the same jobs/job seekers [8]. This competition
amplifies the problem of congestion with recommendations in the job market.

In [3], a job application redistribution system was proposed for LinkedIn
to prevent job postings from receiving an excessive or insufficient number of
applications. To achieve this goal, the job recommendation scores were adjusted
using a dynamic forecasting model that penalized or boosted scores based on the
predicted number of applications. Chen et al. [4] use a decentralized economic
model to learn the scoring functions and use an optimal transport approach for
the final recommendations to reduce congestion in the recommendations.

To reduce congestion in job recommendation, two-step approaches (including
CAROT) are proposed in [1,9]. The first step uses a model to predict the rec-
ommendation scores, and the second step employs optimal transport to better
distribute jobs between job seekers and generate the final recommendations. In
contrast, ReCon integrates the congestion reduction with recommendation into
a single multi-objective task.

From a fairness perspective, two recent approaches (including FairRec) [10,2]
develop greedy algorithms to ensure Envy-Free job recommendations for job
seekers and to guarantee a minimum exposure for job vacancies.
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Fig. 1: Desirability versus congestion-related measures (higher values are better).
Points represent different hyper-parameter combinations. Pareto optimal points
per method are filled. Pareto optimal points across methods have a circle around.
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5 Conclusion and Future Work

In this paper, we proposed a novel approach, ReCon, for reducing congestion
in job recommendation systems using optimal transport theory. Our approach
aimed to ensure a more equal spread of jobs over job seekers by combining
optimal transport and a given job recommendation model in a multi-objective
optimization problem. The evaluation results showed that our approach had
good performance on both congestion-related and desirability measures. The
proposed method can be a promising solution to the problem of congestion in
job recommendation systems, and can potentially lead to more efficient and
effective job matching.

For future work, we intend to evaluate ReCon using various recommendation
models. Moreover, we aim to scale ReCon to be applicable to large-scale job
market datasets by optimizing optimal transport in min-batches.
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Appendix A Optimal Transport

Optimal transport refers to the problem of finding the most efficient way to
transport one given distribution of resources (e.g., masses, probabilities) to an-
other. Mathematically, this can be represented as finding a transportation plan
that minimizes the cost of transporting the resources from one place to another,
subject to certain constraints. The cost of transporting the resources is often
represented using a distance function. In the context of the present paper, we
are interested in the optimal transport between users U (job seekers) and items
I (jobs), where D = [dui] denotes a cost of matching users with items. Hence,
the optimal transport plan F = [fui] is given as:

min
F

∑
u∈U

∑
i∈I

fuidui, s.t. fui ≥ 0 ∀(u, i) ∈ U × I,∑
i∈I

fui = wu ∀u ∈ U,
∑
u∈U

fui = wi ∀i ∈ I. (5)

A tractable relaxation of the above optimization problem is proposed in [5],
by regularization with an entropy term:

min
F

∑
u∈U

∑
i∈I

fui(dui + ϵ log(fui)),

s.t.
∑
i∈I

fui = wu ∀u ∈ U,
∑
u∈U

fui = wi ∀i ∈ I, (6)

https://doi.org/10.1145/3366423.3380196
https://doi.org/10.1145/3366423.3380196
https://doi.org/10.1145/3366423.3380196
https://doi.org/10.1145/3366423.3380196
https://doi.org/10.1145/3366423.3380196
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with ϵ the regularization weight. This relaxed optimization problem can be
solved with the Sinkhorn algorithm [5], where its solution is differentiable w.r.t.
the cost values D, and suitable for various optimization tasks.

For simplicity, we set wu = 1
|U | for all users u ∈ U and wi =

1
|I| for all items

i ∈ I in Eq. (5) and Eq. (6), so that the total mass for users and items is the
same and all users, respectively items, are treated equally.

Appendix B The Matching Cost and Similarity Functions

In this section, we present our intuition for designing functions c and s as Eq.(4).
By choosing functions c and s by Eq.(4), the cost of optimal transport OC in

Eq. (1) is −
∑
u∈U

∑
i∈I

fui ln(pui)+ (1− fui)ln(1− pui) = −
∑
u∈U

∑
i∈I

ln(p
fij
ui )+ ln((1−

pui)
1−fij ) = − ln

∏
u∈U

∏
i∈I

pfui

ui (1− pui)
1−fui .

The intuition behind choosing this term is as follows. In the case where
|U | = |I| the optimal transport has an optimum where each user is mapped to
exactly one item and vice versa, i.e., fij ∈ {0, 1} in F = [fij ]. For this case,
if P represents the matching probabilities, it is easy to see that computing the
optimal transport would be the same as computing a matching between users
and items with the highest probability accounting for the user-item pairs that
are not part of the matching as well.

Appendix C Experimental Evaluation

In this section, we describe the datasets, the recommendation models, baselines,
evaluation settings, details of hyper-parameters, more results for baseline com-
parison, execution time comparison, and hyper-parameter sensitivity analysis for
λ.

C.1 Datasets

We evaluated the methods using two datasets:
VDAB4: VDAB is the employment service of Flanders in Belgium. The

dataset contains a suitably anonymized sample of the applications made by job
seekers to available job vacancies in the last ten days of 2018.

CareerBuilder5: CareerBuilder is an e-recruitment platform, which matches
job seekers with jobs. We use the applications made by job seekers to available
job vacancies in the last ten days of its public dataset6 for the evaluation.

To better use collaborative filtering signals, we only keep job seekers and jobs
with at least four interactions in both datasets. Table 1 shows the main statistics
of the datasets.
4 https://www.vdab.be/
5 https://www.careerbuilder.com/
6 https://www.kaggle.com/c/job-recommendation

https://www.vdab.be/
https://www.careerbuilder.com/
https://www.kaggle.com/c/job-recommendation
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Table 1: Main statistics of the datasets used for evaluation.
Dataset Job seekers Jobs Train Interactions Val. Interactions Test Interactions

VDAB 1693 2931 9766 1428 2950
CareerBuilder 3876 4337 24316 1071 4557

C.2 Recommendation models

We evaluate methods using both collaborative filtering and content-based meth-
ods as the base recommendation models.

We use Conditional Network Embedding (CNE; [6]) as the base collabora-
tive filtering recommendation model. CNE is a network embedding method that
proposes a probability distribution for the network conditional on the embed-
ding and finds the optimal embedding by maximum likelihood estimation. CNE
satisfies the requirements in Section 2.2 for efficient optimization.

For the base content-based recommendation model (NN), we design a feed-
forward neural network with a binary cross-entropy loss function. The network
can be separated into two parts, one for job seeker features and one for job
features, with the same architecture. Each part consists of several linear layer
followed by an activation function except for the last layer of each part. Fi-
nally, we compute the inner product of the last layer of each part followed by
a Sigmoid function. The features we use include numerical features, categori-
cal features, and textual features. For the textual features, we use multi-lingual
Sentence-BERT embeddings [12] and use PCA to reduce the dimensions. For
VDAB dataset which contains skills, we consider the top one hundred most
commonly occurring skills.

C.3 Baselines

We compare ReCon with the following baselines that both receive the recommen-
dation scores from a trained model in their first step. Hence, both baselines have
post-processing approaches.

CAROT [1]: CAROT employs optimal transport to redistribute jobs among
job seekers. The final recommendation is according to the optimal transport
solution. Since both methods presented in [1] and [9] have a similar approach,
we only compare our proposed method with CAROT [1].

FairRec [10]: FairRec is a greedy method that ensures Envy-Free job recom-
mendations for job seekers and guarantees a minimum exposure for job vacancies
by converting the fair recommendation problem into a fair allocation problem.
Since [10] and [2] have a similar approach and the modification in [2] is not fo-
cused on the congestion problem, we only compare our proposed method with
FairRec [10]. As FairRec requires |I| ≤ k · |U |, we did not evaluate it for k = 1.
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C.4 Settings

Both datasets include the interactions in a period of ten days. For each dataset,
we use the interactions in the first six days for training, the seventh day for
validation (for early stopping based on AUC for CNE and Congetion@1 for
ReCon), and the last three days for the test set. We also use the source code
provided by the authors for the baselines.

For Carot, we select ϵ from {1, 10, 100}. We also use four different functions
to obtain the matching costs in the second step of the method (that solves the
optimal transport problem) including linear (Id+), exponential (Exp+), rank-
based (Rank), or NDCG-like (NDCG) functions as mentioned in CAROT paper
[1]. For FairRec, we select α (the coefficient for the producer-side guarantee in
their method) from {0.2, 0.4, 0.6, 0.8, 1.0}. Since FairRec only generates the
recommendations and not the scores, we run the method for each value k in the
top-k recommendation for evaluation. For ReCon, we select λ from {1e-1, 1e-2,
1e-3, 1e-4, 1e-5, 1e-6}.

We evaluate the methods on the following desirability measures:

– NDCG: Normalized discounted cumulative gain, which is computed by sum-
ming the true scores ranked in the order induced by the predicted scores
after applying a logarithmic discount, divided by the best possible score.

– Recall: The proportion of relevant items found in the top-k recommenda-
tions.

– Hit Rate: The fraction of users for which the correct answer is included in
the top-k recommendations.

We also evaluate the methods on the following congestion-related measures:

– Congestion: Congestion is defined as the negative entropy of item market
shares, where item market share MSl(i) of item i is defined as the fraction
of users such that item i appears among their top-k recommendations [1]. As
suggested by Bied et al. [1], Congestion is divided by log(|I|) (I represents
the set of items) to map it to [−1, 0]. Congestion is minimized if the entropy
of the market shares is minimized. Hence, -1 is the optimal value.

– Coverage: The fraction of items involved in top-k recommendation of at least
one user [1].

– Gini Index: The Gini index is a statistical measure of the inequality of a
distribution [11]. In the context of job recommendation, the Gini index is
computed for the market share of items.

C.5 Details of hyper-parameters of the recommendation models

In this section we describe the hyper-parameters used.
For the base CNE model, we use the degree prior (for more information please

see [6]) and use dot product as the distance function.
We optimize CNE, NN, and ReCon with AdamW optimizer. We use early

stopping based on validation loss for CNE and NN and based on Congestion@1
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for ReCon in the training phase. We also perform hyper-parameter tuning based
on validation Hit Rate@10 for CNE and NN. For ReCon, we select a set of hyper-
parameters that result in a good trade-off between Congestion@1 and validation
Hit Rate@10. Table 2 and Table 3 show the selected hyper-parameters after
hyper-parameter tuning for CNE and NN, respectively. In both tables, ϵ and
OT iterations refer to the parameters in Sinkhorn algorithm. In Table 3, the
layers show the dimensions of the layers for job seeker and job parts in the
neural network. For all models, only one layer gave the best result. Moreover,
categorical embedding dimension for each categorical feature is the minimum of
the number mentioned in the table and the number of unique values foe that
feature divided by two.

Table 2: The selected hyper-parameters for CNE after hyper-parameter tuning.
Dataset VDAB CareerBuilder VDAB CareerBuilder
Method CNE CNE ReCon ReCon

Batch size 512 4096 256 512
Learning rate 0.001 0.0005 0.0005 0.0005
Weight decay 0.01 0.1 0 0.001
Embedding dimension 128 32 128 128
ϵ - - 0.1 0.1
OT iterations - - 10 10

Table 3: The selected hyper-parameters for NN after hyper-parameter tuning.
Dataset VDAB CareerBuilder VDAB CareerBuilder
Method CNE CNE ReCon ReCon

Batch size 1024 512 512 512
Learning rate 0.0026 0.05 0.016 0.005
Weight decay 0.067 0.0826 0.033 0.096
Layers dimension 128 32 256 128
Categorical embedding dim 4 32 8 8
Skill embedding dim 16 - 16 -
Text embedding dim 16 32 16 16
Activation function Sigmoid Relu Relu Relu
ϵ - - 0.1 0.1
OT iterations - - 100 100
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C.6 Baseline comparison

Here we compare the methods in terms of the desirability measures and congestion-
related measures. Figures 2-13 show the performance of all methods, where they
all compare a desirability measure (NDCG, Recall, or Hit Rate) and a congestion-
related measure (Congestion, Coverage, or Gini Index). We can observe that for
some selections of hyper-parameters, ReCon usually finds a good trade-off be-
tween both measures.
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Fig. 2: Desirability versus congestion-related measures in VDAB dataset with
CNE for top-1 recommendation (higher values are better). Points represent dif-
ferent hyper-parameter combinations. Pareto optimal points per method are
filled. Pareto optimal points across methods have a circle around.

Execution time comparison In this experiment, we compare the methods
in terms of the execution time.
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Fig. 3: Desirability versus congestion-related measures in VDAB dataset with
CNE for top-10 recommendation (higher values are better). Points represent
different hyper-parameter combinations. Pareto optimal points per method are
filled. Pareto optimal points across methods have a circle around.
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Fig. 4: Desirability versus congestion-related measures in VDAB dataset with
CNE for top-100 recommendation (higher values are better). Points represent
different hyper-parameter combinations. Pareto optimal points per method are
filled. Pareto optimal points across methods have a circle around.
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Fig. 5: Desirability versus congestion-related measures in CareerBuilder dataset
with CNE for top-1 recommendation (higher values are better). Points represent
different hyper-parameter combinations. Pareto optimal points per method are
filled. Pareto optimal points across methods have a circle around.
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Fig. 6: Desirability versus congestion-related measures in CareerBuilder dataset
with CNE for top-10 recommendation (higher values are better). Points represent
different hyper-parameter combinations. Pareto optimal points per method are
filled. Pareto optimal points across methods have a circle around.



18 Y. Mashayekhi et al.

−0.01 0.00 0.01 0.02

Recall@1

0.6

0.7

0.8

0.9

-C
on

ge
st
io
n@

1
ReCon CAROT FairRec CNE (Base Model)

0.4 0.6 0.8
Hit Rate@100

−0.6

−0.4

−0.2

0.0

-G
in

i I
nd

ex
@

10
0

0.2 0.4 0.6
Recall@100

−0.6

−0.4

−0.2

0.0

-G
in

i I
nd

ex
@

10
0

0.1 0.2 0.3
NDCG@100

−0.6

−0.4

−0.2

0.0

-G
in

i I
nd

ex
@

10
0

0.4 0.6 0.8
Hit Rate@100

0.99

1.00

1.01

Co
ve

ra
ge

@
10

0

0.2 0.4 0.6
Recall@100

0.99

1.00

1.01

Co
ve

ra
ge

@
10

0

0.1 0.2 0.3
NDCG@100

0.99

1.00

1.01

Co
ve
ra
ge
@
10
0

0.4 0.6 0.8
Hit Rate@100

0.90

0.95

1.00

-C
on

ge
st

io
n@

10
0

0.2 0.4 0.6
Recall@100

0.90

0.95

1.00

-C
on

ge
st
io
n@

10
0

0.1 0.2 0.3
NDCG@100

0.90

0.95

1.00

-C
on

ge
st
io
n@

10
0

Fig. 7: Desirability versus congestion-related measures in CareerBuilder dataset
with CNE for top-100 recommendation (higher values are better). Points repre-
sent different hyper-parameter combinations. Pareto optimal points per method
are filled. Pareto optimal points across methods have a circle around.
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Fig. 8: Desirability versus congestion-related measures in VDAB dataset with
NN for top-1 recommendation (higher values are better). Points represent differ-
ent hyper-parameter combinations. Pareto optimal points per method are filled.
Pareto optimal points across methods have a circle around.
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Fig. 9: Desirability versus congestion-related measures in VDAB dataset with
NN for top-10 recommendation (higher values are better). Points represent dif-
ferent hyper-parameter combinations. Pareto optimal points per method are
filled. Pareto optimal points across methods have a circle around.



Title Suppressed Due to Excessive Length 21

0.00 0.25 0.50 0.75

AUC

0.7

0.8

-C
on

ge
st
io
n@

1
ReCon CAROT FairRec NN (Base Model)

0.5 0.6 0.7 0.8
Hit Rate@100

−0.75

−0.50

−0.25

0.00

-G
in

i I
nd

ex
@

10
0

0.2 0.4
Recall@100

−0.75

−0.50

−0.25

0.00

-G
in

i I
nd

ex
@

10
0

0.10 0.15 0.20 0.25
NDCG@100

−0.75

−0.50

−0.25

0.00

-G
in

i I
nd

ex
@

10
0

0.5 0.6 0.7 0.8
Hit Rate@100

0.99

1.00

1.01

Co
ve

ra
ge

@
10

0

0.2 0.4
Recall@100

0.99

1.00

1.01

Co
ve

ra
ge

@
10

0

0.10 0.15 0.20 0.25
NDCG@100

0.99

1.00

1.01

Co
ve
ra
ge
@
10
0

0.5 0.6 0.7 0.8
Hit Rate@100

0.8

0.9

1.0

-C
on

ge
st

io
n@

10
0

0.2 0.4
Recall@100

0.8

0.9

1.0

-C
on

ge
st
io
n@

10
0

0.10 0.15 0.20 0.25
NDCG@100

0.8

0.9

1.0

-C
on

ge
st
io
n@

10
0

Fig. 10: Desirability versus congestion-related measures in VDAB dataset with
NN for top-100 recommendation (higher values are better). Points represent
different hyper-parameter combinations. Pareto optimal points per method are
filled. Pareto optimal points across methods have a circle around.
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Fig. 11: Desirability versus congestion-related measures in CareerBuilder dataset
with NN for top-1 recommendation (higher values are better). Points represent
different hyper-parameter combinations. Pareto optimal points per method are
filled. Pareto optimal points across methods have a circle around.
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Fig. 12: Desirability versus congestion-related measures in CareerBuilder dataset
with NN for top-10 recommendation (higher values are better). Points represent
different hyper-parameter combinations. Pareto optimal points per method are
filled. Pareto optimal points across methods have a circle around.
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Fig. 13: Desirability versus congestion-related measures in CareerBuilder dataset
with NN for top-100 recommendation (higher values are better). Points represent
different hyper-parameter combinations. Pareto optimal points per method are
filled. Pareto optimal points across methods have a circle around.
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Fig. 14: Execution time (log-scale) for both datasets and both base recommen-
dation models. The execution time of each baseline is averaged over different
selections of hyper-parameters.

Figure 14 shows the execution time in hours for both datasets and both base
recommendation models. The execution time of each baseline is averaged over
different selections of hyper-parameters. The training time of the base model
is added to the execution time of CAROT and FairRec, as they receive the
matching scores from the base recommendation model. ReCon is slower than
the base recommendation models and CAROT since it optimizes the optimal
transport cost and the base recommendation model jointly.

The execution time of FairRec depends on the value of k in the top-k rec-
ommendation, where it is faster for smaller values of k. The execution time of
ReCon is comparable or better than FairRec for CNE, but is worse for NN.

C.7 Hyper-parameter sensitivity analysis for λ

In this section, we analyze the performance of ReCon for different values of λ
(the weight of the optimal transport in ReCon). Figure 15 and Figure 16 show
different measures for different values of λ for both datasets with CNE and NN,
respectively. As expected, we can observe that congestion-related measures are
mostly improved by increasing λ. Surprisingly, decreasing the value of λ does not
necessarily result in an improvement in desirability measures. Difficulties in the
training phase for very small values of λ could be the reason for this observation.
Another reason for this observation could be that the optimal transport part in
ReCon can improve the desirability measures as well in some cases.
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Fig. 15: Performance of ReCon in both datasets with CNE for different values of
λ (the weight of the optimal transport in ReCon).
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Fig. 16: Performance of ReCon in both datasets with NN for different values of
λ (the weight of the optimal transport in ReCon).
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