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Abstract. An accurate CV is essential for job seekers to find a suitable
job, and for vacancies to be filled by the best candidate. However, writing
a CV that accurately represents the skills of a person is not easy. Skills
are often omitted as a person might deem them irrelevant or simply due
to forgetfulness. This can lead to problems in matching people to vacan-
cies. We propose a novel way to complete CVs by combining generative
probabilistic models with positive unlabeled learning techniques. This
allows us to more accurately estimate the real skills of the job seeker, or
the skills they would easily acquire. The efficacy of our proposed method
is illustrated on a synthetic dataset.
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1 Introduction

Writing a good CV is not easy. Job seekers can undersell themselves, or fail to
mention crucial skills altogether [4]. CVs are often incomplete, and not always a
good reflection of the person’s true skills [5]. Also, some skills can be less likely
to be mentioned than others, resulting in a biased subset of the true skills.

The Flemish public employment services provide a CV tool in which skills
can be added from a custom ontology. Because the ontology is so large, a user
cannot reasonably check every skill they possess in the ontology. As a result,
their CV will likely be incomplete and biased to include some skills more.

In this paper we propose a method to probabilistically complete CVs and
(partially) remove the initial bias present in CVs. The method uses a generative
probabilistic model to predict how a CV was created. Using techniques from
positive unlabeled (PU) learning and variational inference (VI), we can train the
model and use it for completing CVs. During training, the model is made aware
of biases via the so-called labeling mechanism, a construct from PU learning.
This allows it to be trained in a less biased way.

The work [7] also uses PU learning to complete databases and reduce bias.
Many other methods that try to augment CVs, use natural language repre-
sentations, such as [8], where similarities are also learned in an unsupervised
context using incomplete skills. [2] uses BERT models augmented with skill co-
occurrences to find better neural representations. Recurrent neural networks are
used in [6] to improve job matching and reduce the effects of human errors.



2 V. Verreet et al.

2 Background

2.1 Positive Unlabeled Learning

In the setting of PU learning, the task is to train a classifier that can predict the
true class, positive or negative, using only positively labeled or unlabeled data
during training. The classifier does not have access to any negatively labeled
instances. In a classic PU learning setup, every instance has observed attributes
x ∈ Rr, an unobserved true class y ∈ {p, n} and an observed label s ∈ {l, u}.
The joint distribution factorizes as

P (x, y, s) = P (s | y, x)P (y | x)P (x) (1)

where P (x) is the distribution of the instances, P (y | x) is the classifier and
P (s | y, x) is the labeling mechanism. This mechanism decides with what prob-
ability each data point gets selected for labeling. The following two equivalent
statements are called the PU property and define the PU learning setting

P (s = l | y = n) = 0 or P (y = p | s = l) = 1 . (2)

As such we can define the classifier C and labeling mechanism M as

C(x) = P (y = p | x) and M(x) = P (s = l | y = p, x) (3)

which together with Eq. 2 leads to the factorization

P (s = l | x) = C(x)M(x) . (4)

Note that P (s = l | x) can be estimated from data and thus provides a signal
to train the classifier C. However, the C that results from training, depends on
the labeling mechanism M , as is evident from Eq. 4. If M is not constant, it
can lead to biased learning. Choosing the right labeling mechanism can thus
have a big impact on the accuracy of the classifier. For example, if the labeling
probability is assumed to be only half of the true probability, then the classifier
will compensate and predict positive with a probability twice as high to explain
the observed label frequencies. The survey [1] gives an overview of PU learning.

2.2 Variational Inference

Consider a probabilistic model with observed variables d and unobserved vari-
ables h. Typically, h is some hidden state that we want to uncover. Unfortu-
nately, the true posterior P (h | d) is usually intractable to compute. Hence, the
technique of VI introduces a tractable guide distribution Qθ(h) to approximate
P (h | d). This guide is optimised with respect to θ to lie as close to the true
posterior P (h | d) as possible. Often one uses the evidence lower bound (ELBO)
as maximization criterion

ELBO = EQ[logP (d, h)− logQθ(h)], (5)

because it bounds the data log-likelihood logP (d) ≥ ELBO. The ELBO is often
seen as a more practical criterion compared to directly optimising the data log-
likelihood. Also in this work, we will use VI with the ELBO to approximate the
posteriors P (y | s) and P (x | s) from the PU learning setting.
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3 Our Method

We formalize the generative task of CV completion as follows. There is a fixed set
of K skills that a person can potentially have. As such a CV is represented by a
binary vector cv ∈ {0, 1}K . The k entry is denoted by cvk and indicates whether
skill k is mentioned on the CV. We opt for this representation because skill tokens
can easily be extracted from CVs represented in natural language. Furthermore,
some public employment services already store CVs in this structured form. A
CV completion is a mapping f : {0, 1}K → [0, 1]K . The entries f(cv)k of the
completion f(cv) indicate how likely it is for the person to possess the skill k.
We make the reasonable assumption that if a person mentions a skill on their
CV, that they actually possess the skill. Symbolically,

∀k : cvk = 1 =⇒ f(cv)k = 1 . (6)

We will later see how this assumption allows us to frame CV completion as a PU
learning problem. We will now specify the generative probabilistic model used
for the completion f .

person

skills

style

cv

Fig. 1. A generative model used to complete CVs.

We propose the generative model depicted in Fig. 1 to complete CVs. This
model starts with the person variable, which is represented in a latent embedding
space person ∈ Rr. Every person has a true skill set. SinceK skills are considered
in the model, they are represented as a vector skills ∈ [0, 1]K . Every person also
has a CV writing style. The variable style ∈ [0, 1]K can depend both on person
and skills. It contains the probabilities that a person would mention a skill on
their CV given that they have the skill. Finally, the CV is the product of both
the true skills and the writing style.

The variables in the generative model can be related to the PU learning
setup in the following way. The person variable follows the instance distribution
P (x), representing the diverse distribution of people. Next, the skills variable
corresponds to the classifier P (y | x), while style is the labeling mechanism
P (s | y, x). A given CV is then distributed according to P (s | x), which factorises
into the classifier and the labeling mechanism according to Equation 4.

Crucially, the PU property (Eq. 2) needs to be satisfied to formally cast
optimizing the model as a PU learning problem. Given a CV completion f , we
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know from Eq. 6 that mentioning a skill in a person’s CV implies that the person
has this skill. Using the previous relations, this property of f translates to

∀k : P (yk = p | sk = l) = 1 . (7)

Put differently, the function f corresponds to the posterior distribution P (y | s).
The generative model does differ from a classic PU learning setup in two ways:

(1) there is a true class yk for every skill k, thus we are dealing with multilabel
classification, and (2) the attributes x are unobserved. However, these differences
do not prevent us from applying PU techniques as they can be dealt with via
multivariate PU learning and the inclusion of another generative component for
x, respectively.

Two posterior distributions are of particular interest in this generative model,
namely P (y | s) and P (x | s). The first posterior P (y | s) indicates which
skills a person is likely to actually have, given their CV. It corresponds to the
CV completion function f . Although the PU property imposes that mentioning
a skill implies having that skill, it is possible to have additional unmentioned
skills. As such, the posterior can be used to complete a CV. The second posterior
P (x | s) is of interest because it indicates where in the latent embedding space
the person lies. This allows similar CVs to be clustered and detect patterns in
the data.

4 Results

Experiments have been performed to answer three research questions:

Q1 Can we learn a meaningful representation for people in the latent embedding
space? Are similar CVs clustered together?

Q2 Can we infer missing skills on a CV? How do our assumptions of the labeling
mechanism affect the bias during inference?

Q3 Does our approach scale well in the number of skills and instances?

All experiments have been performed on synthetic data. This has the benefit
that we can control the number of skills and instances, as well as know the
true labels of the instances. For real-world PU data, the labels are often not
known, which makes evaluation tricky. The data has been generated as follows.
Every person is assumed to belong to one of ρ clusters and every cluster has κ
unique skills assigned to it. Furthermore, there are κ′ universal skills that are
assigned to all clusters. In total there are K = ρ κ+κ′ skills. For every skill, the
probability to have it is 1− α if the skill is assigned to the person’s cluster and
α otherwise. Finally, a probability µk ∈ [µLow, µHigh] for skill k to be labeled is
generated for every skill. This is the true labeling mechanism. In all experiments
N = 5000 instances were used for training, except for the scalability experiment.
We always optimized the ELBO (Eq. 5) using the Adam optimizer [3] from the
Pyro1 library with an initial learning rate of λ = 0.001 over I = 10000 iterations.

1 https://pyro.ai/
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Fig. 2. Clustering in the latent space for ρ = 3 on the left and ρ = 5 on the right.
Instances are assigned a colour based on the true cluster they were generated from.

To answer question Q1, we have trained generative models and visualized the
data in the latent embedding space. For this reason we have chosen the latent
space to have a dimension of 2. Fig. 2 shows a learned clustering for ρ = 3 and
ρ = 5 and respective probabilities α = 0.1 and α = 0.2. As is visible in the
figure, the instances from different clusters get grouped per cluster in the latent
space. Close instances in the latent space will thus have similar skills and CVs.

α\β 1.00 0.75 0.50 0.25

1.00 0.0002 0.2540 0.2591 0.2458
0.90 0.0884 0.2624 0.2531 0.2429
0.80 0.1616 0.2546 0.2498 0.2548
0.70 0.2145 0.2506 0.2549 0.2615
0.60 0.2401 0.2536 0.2534 0.2532

Table 1. Mean squared errors after training with varying assumptions on the labeling
mechanism.

For question Q2 we have trained multiple generative models that make differ-
ent assumptions about the labeling mechanism and compared the mean squared
error between the true skills and the predicted skills vector for these assumptions.
More concretely, the true labeling mechanism is generated with µk ∈ [0.5, 1.0]
independently and uniformly for every skill k. We then train the model with an
assumed labeling mechanism µ′

k = βµk with β a constant. Note that for β = 1
the correct labeling mechanism is assumed. The mean square error is reported in
Tab. 1 for varying values of α and β. Assuming the correct labeling mechanism
leads to the lowest error. Decreasing β means that the assumed labeling mech-
anism becomes less correct, and the error rapidly increases. The closer α gets
to 0.5 the more the skills gets mixed between different clusters. Consequently
it becomes increasingly difficult to predict the correct skills, the effect of which
can also be observed in the errors.
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Fig. 3. Distribution of skills, ordered by number of occurrences, in 2 different clusters.

Lastly we perform an experiment with more instances and a larger number
of skills to illustrate scalability for Q3. A model is trained with ρ = 50 clusters,
K = 400 skills and N = 10000 instances. After training, the data is clustered
using the K-means algorithm. The distribution of the skill occurrences, ordered
by number of occurrences, are shown for 2 clusters in Fig. 3. The distribution
is very similar for the remaining 48 clusters. The distribution is very peaked,
indicating that meaningful clusters have still been learned in this setting of large
skill and instance numbers. Every learned cluster only has a limited set of skills
attributed to that cluster and has a long tail of noisy skills mixed in from other
clusters.

5 Conclusion

Our method is able to probabilistically complete the skills of a CV for better job
matching and other downstream tasks. A meaningful clustering is learned in the
latent embedding space. Furthermore, taking into account the labeling mecha-
nism helps to make the completions less biased. The method is scalable, which
is important when applying it to real world data. For future work, the method
can be applied to a large database of CVs from the Flemish public employment
services. More complicated labeling mechanisms and interactions between var-
ious skills can also be investigated. Ideally, domain experts can represent their
knowledge of the labeling mechanism to decrease the bias in CV completions.
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